RefDoc
Haut

Faire une nouvelle recherche
Make a new search
Lancer la recherche


Titre du document / Document title

Computational chemistry predictions of kinetics and major reaction pathways for germane gas-phase reactions

Auteur(s) / Author(s)

SIMKA H. (1) ; HIERLEMANN M. (1) ; UTZ M. (1) ; JENSEN K. F. (1) ;

Affiliation(s) du ou des auteurs / Author(s) Affiliation(s)

(1) Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, ETATS-UNIS

Résumé / Abstract

Gas-phase reaction pathways for GeH4 decomposition are the relevant reaction rates are evaluated by transition-state theory with mo ecular structures and thermochemical data predicted by ab initio molecular orbital calculations, specifically Hartree-Fock with second-order Moller-Plesset perturbation theory. Pressure and temperature effects are included in computed unimolecular reaction rates through the application of Rice-Ramsperger-Kassel-Marcus theory. Quantum-Rice-Ramsperger-Kassel theory is used to estimate the relative rates of stabilization and chemical activation pathways for the insertion of GeH2 into GeH4 to form Ge2H6 and Ge2H4, respectively. The predicted and measured reaction rates agree well with reactions for which experimental kinetic data have been reported. The developed GeH4 decomposition mechanism is subsequently used in a finite-element reactor simulation of germanium deposition to demonstrate the utility of quantum chemistry Ior developing kinetic rates required in realistic macroscopic models of deposition processes. Contribution of gas-phase reactions to the germanium growth rate is predicted to be important at pressures higher than 1 Torr and temperatures greater than 1000 K.

Revue / Journal Title

Journal of the Electrochemical Society    ISSN  0013-4651   CODEN JESOAN 

Source / Source

1996, vol. 143, no8, pp. 2646-2654 (52 ref.)

Langue / Language

Anglais

Editeur / Publisher

Electrochemical Society, Pennington, NJ, ETATS-UNIS  (1948) (Revue)

Mots-clés anglais / English Keywords

Medium effect

;

Pressure

;

Temperature

;

Gas phase

;

Ab initio method

;

Theoretical study

;

Reaction mechanism

;

Germylene

;

Germane

;

Digermane

;

Rate constant

;

Germanium Compounds

;

Mots-clés français / French Keywords

Effet milieu

;

Pression

;

Température

;

Phase gazeuse

;

Méthode ab initio

;

Etude théorique

;

Mécanisme réaction

;

Germylène

;

Germane

;

Digermane

;

Constante vitesse

;

Digermène

;

Germanium Composé

;

Mots-clés espagnols / Spanish Keywords

Efecto medio

;

Presión

;

Temperatura

;

Fase gaseosa

;

Método ab initio

;

Estudio teórico

;

Mecanismo reacción

;

Germileno

;

Germano

;

Digermano

;

Constante velocidad

;

Germanio Compuesto

;

Localisation / Location

INIST-CNRS, Cote INIST : 4925, 35400006403357.0490

Nº notice refdoc (ud4) : 3200295



Faire une nouvelle recherche
Make a new search
Lancer la recherche
Bas